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Hepatitis E Virus Seroprevalence among 
Adults, Germany 

Technical Appendix 

Detailed Methods 

Description of the catalytic model 

The incidence in the manuscript was computed using a so called simple catalytic 

epidemic model (Griffiths 1974; Farrington 2005), where the force of infection (FOI) is assumed 

to be time constant. The dependent variable in the fitted models was a binary variable indicating 

whether a person in the study had seroconverted or not. Catalytic models assume that infection 

induces life-long immunity and does not affect the mortality rate of infected individuals. A 

consequence of the constant FOI is that the population is assumed to be homogeneous with 

respect to both susceptibility and exposure to infection. Furthermore, infection is assumed to be 

in equilibrium state, i.e. the level of incidence is assumed to remain constant in time. 

Notation 

Denote the available data { (yi,ai), i = 1,…,n} where yi is a binary variable indicating if 

the i’th individual has seroconverted (0 = no, 1 = yes) and ai is the age of the individual in years 

(i.e. taken as a continuous variable). Let p(a) be the probability that an individual of age a has 

sero-converted. Inference about the parameters in a parametric model for p(a) can now be 

performed using the binomial likelihood: 
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In the constant FOI model, i.e. λ(a) = α for a≥0, the probability to have seroconverted at 

age a is given by p(a) = 1 – exp(–αa). One can show (see, e.g., Becker 1989 or Farrington 2005) 

that the desired estimation problem for α can be reduced to the fitting of a generalized linear 

model with complementary log-log (cloglog) link function having the following linear predictor: 
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This model can be fitted with any GLM software (e.g., function glm in Stata or R) by 

specifying a binomial model with cloglog link function and using log(a) as offset in the linear 

predictor. The natural exponent of the intercept estimate in such a model is the desired estimate 

α. The annual incidence can now be computed as 
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In its basic form, this is the model used by Faramawi et al. (2011) to compute the annual 

incidence. Confidence intervals for I are easily obtained by transforming the confidence interval 

of the intercept in the GLM by the above equation for I. We chose this simple constant FOI in 

order to obtain a nation-wide estimate of the annual incidence which allows for comparison with 

the Faramawi et al. estimates for the US.  

Results 

Performing the above calculations for our n = 4,352 individuals we obtain Î = 0.00398, 

i.e., the annual incidence is 398 per 100,000 population with a 95% CI of 372–428. To address 

post-stratification in the analysis, we additional fitted the above GLM by weighting each 

observation according to its specific post-strafication sampling weight (e.g. function svyglm in 

Stata or R). The (survey- weighted) estimated annual incidence is now 392 per 100,000 

population (95% CI 364–423). We report this weighted estimate of the annual incidence in the 

manuscript together with the associated confidence intervals.  

Model Checking 

Graphical analysis of the residuals from a model with binary response is difficult due to 

the extreme discrete nature of the problem. Furthermore, such model checking is further 

complicated by the complex survey setup of our sample. Instead, we perform an alternative 

examination of the model fit. As a first qualitative assessment, we decided to investigate the 

models point-wise predictive performance. Based on the asymptotic normality of the GLM 

estimate we sampled 999 FOI estimates from the normal distribution with mean ˆ and variance 

equal to the estimated variance of ˆ . For each FOI obtained from this sampling we then  
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• Calculated the model predicted probability )(ˆ
iap  for each individual i = 

1,…,4352 in the data and sampled a Bernoulli variable using this probability for 

each individual.  

• Given the above Bernoulli realizations we could then for each year of age obtain a 

new raw seroprevalence estimate respecting the sampling weights (i.e., by using 

the function svymean). 

The Technical Appendix Figure shows point-wise 95% prediction intervals for the 

seroprevalence of age (in years) based on these 999 parametric bootstrap samples. For 

comparison, the original survey weighted estimates are indicated as black dots with size 

proportional to the number of observations available at that age. We observe that the simple 

catalytic model obtains a good fit with only few points outside the prediction bands. Also, the 

Pearson goodness of fit test for the simple catalytic model does not reject the null hypothesis (p = 

0.88). 
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Technical Appendix Figure. Survey-weighted seroprevalence for each year illustrated as black dots. Each 

dot is shown proportional in size to the actual sample size (n) at that age. 95% point-wise prediction 

intervals for the simple catalytic are shown in grey. Also shown are the model fitted proportions for the 

simple catalytic model and two additional models with extra flexibility for age.  

In the figure, the black dotted line shows the estimated p(a) of the simple catalytic model. 

As a sensitivity analysis the red line similarly shows p(a) in Weibull model for the FOI. This 

model obtains a better fit with γ being significant indicating that the FOI, and hence the annual 
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incidence, is age specific. However, age specific incidence rates would be harder to interpret and 

report, especially because our aim was to calculate an overall incidence rate. Another reason is 

that even this model is not fully sufficient to address all aspects of the data: the green line shows 

the fit of a fully flexible survey-weighted kernel smoother for p(a). In concordance with Figure 1 

of the manuscript we here observe a slight decrease in the seroprevalence at the high ages, which 

is mentioned in the manuscript discussion. Reporting age-specific annual incidence rate based on 

such a flexible model would require a table containing a number for each year of age, which is 

not really useful for our purpose. 

Within the cloglog GLM framework it is possible to allow for heterogeneity in the FOI 

by adjusting for additional variables than age. We investigated additional dependence of sex and 

residence in the linear predictor, but none of these variables turned out to be significant at the 5% 

significance level. 

Thus, our reported annual incidence estimate remains a nicely interpretable and 

communicable result which allows for comparison with Faramawi et al., while the above model 

checking indicates that the assumptions of the constant rate model are reasonable. 
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